
IS304: DBMS Practical

Contents

1. Order by Clause

2. Group by Clause

3. Constraints

IS304: DBMS Practical

1. Order by Clause

The SQL ORDER BY clause is used to sort the data in ascending or descending

order, based on one or more columns. Some database sorts query results in

ascending order by default.

Example: suppose you have the following relation with name emp_info:

IS304: DBMS Practical

Following is an example, which would sort the result in descending order by

F_Name:

To sort the table ascending by salary:

IS304: DBMS Practical

2. Group by Clause

The SQL GROUP BY clause is used in collaboration with the SELECT statement

to arrange identical data into groups. The GROUP BY clause follows the WHERE

clause in a SELECT statement and precedes the ORDER BY clause.

 Example: group emp_info by salary:

By F_Name:

IS304: DBMS Practical

3. Constraints

Constraints are the rules enforced on data columns on table. These are used to limit

the type of data that can go into a table. This ensures the accuracy and reliability of

the data in the database.

Constraints could be column level or table level. Column level constraints are

applied only to one column where table level constraints are applied to the whole

table.

 NOT NULL

 DEFAULT

 UNIQUE Constraint

 PRIMARY Key

 FOREIGN Key

 CHECK Constraint

 INDEX

3.1 NOT NULL Constraint

By default, a column can hold NULL values. If you do not want a column to have

a NULL value, then you need to define such constraint on this column specifying

that NULL is now not allowed for that column.

A NULL is not the same as no data, rather, it represents unknown data.

Example: For example, the following SQL creates a new table called customer and

adds five columns (ID, f_name, Age, email, salary), three of which, ID and

f_Name and Age, specify not to accept NULLs:

IS304: DBMS Practical

To modify column constraint and make it NOTNULL:

3.2 DEFAULT Constraint:

The DEFAULT constraint provides a default value to a column when the INSERT

INTO statement does not provide a specific value.

Example: For example, the following SQL creates a new table called

CUSTOMERS and adds five columns. Here, SALARY column is set to 5000.00

by default, so in case INSERT INTO statement does not provide a value for this

column, then by default this column would be set to 5000.00.

 If CUSTOMERS table has already been created, then to add a DFAULT

constraint to SALARY column, you would write a statement similar to the

following:

IS304: DBMS Practical

To drop DEFAULT constraint:

3.3 Unique Constraint

The UNIQUE Constraint prevents two records from having identical values in a

particular column. In the CUSTOMERS table, for example, you might want to

prevent two or more people from having identical age.

Example: For example, the following SQL creates a new table called customers

and adds five columns. Here, AGE column is set to UNIQUE, so that you can not

have two records with same age:

If customers table has already been created, then to add a UNIQUE constraint to

AGE column, you would write a statement similar to the following:

IS304: DBMS Practical

Or

3.4 PRIMARY Key

A primary key is a field in a table which uniquely identifies each row/record in a

database table. Primary keys must contain unique values. A primary key column

cannot have NULL values.

A table can have only one primary key, which may consist of single or multiple

fields. When multiple fields are used as a primary key, they are called a composite

key.

If a table has a primary key defined on any field(s), then you can not have two

records having the same value of that field(s).

Note: You would use these concepts while creating database tables.

Create Primary Key: Here is the syntax to define ID attribute as a primary key in a

CUSTOMERS table.

To create a PRIMARY KEY constraint on the "ID" column when CUSTOMERS

table already exists, use the following SQL syntax:

IS304: DBMS Practical

NOTE: If you use the ALTER TABLE statement to add a primary key, the

primary key column(s) must already have been declared to not contain NULL

values (when the table was first created).

For defining a PRIMARY KEY constraint on multiple columns, use the following

SQL syntax:

Delete Primary Key: You can clear the primary key constraints from the table, Use

Syntax:

3.5 FOREIGN Key:

A foreign key is a key used to link two tables together. This is sometimes called a

referencing key. Primary key field from one table and insert it into the other table

where it becomes a foreign key i.e., Foreign Key is a column or a combination of

columns, whose values match a Primary Key in a different table.

The relationship between 2 tables matches the Primary Key in one of the

tables with a Foreign Key in the second table.

If a table has a primary key defined on any field(s), then you can not have two

records having the same value of that field(s).

IS304: DBMS Practical

Example: Consider the structure of the two tables as follows:

customers table:

orders table:

 Referential Actions

For storage engines supporting foreign keys, MySQL rejects

any INSERT or UPDATE operation that attempts to create a foreign key value in a

child table if there is no a matching candidate key value in the parent table.

 CASCADE: Delete or update the row from the parent table, and

automatically delete or update the matching rows in the child table. Both ON

DELETE CASCADE and ON UPDATE CASCADE are supported. Between

two tables, do not define several ON UPDATE CASCADE clauses that act

on the same column in the parent table or in the child table.

https://dev.mysql.com/doc/refman/5.6/en/insert.html
https://dev.mysql.com/doc/refman/5.6/en/update.html

IS304: DBMS Practical

 SET NULL: Delete or update the row from the parent table, and set the

foreign key column or columns in the child table to NULL. Both ON

DELETE SET NULL and ON UPDATE SET NULL clauses are supported.

 If you specify a SET NULL action, make sure that you have not

declared the columns in the child table as NOT NULL.

 RESTRICT: Rejects the delete or update operation for the parent table.

Specifying RESTRICT (or NO ACTION) is the same as omitting the ON

DELETE or ON UPDATE clause.

 NO ACTION: A keyword from standard SQL. In MySQL, equivalent

to RESTRICT. The MySQL Server rejects the delete or update operation for

the parent table if there is a related foreign key value in the referenced table.

Some database systems have deferred checks, and NO ACTION is a

deferred check. In MySQL, foreign key constraints are checked

immediately, so NO ACTION is the same as RESTRICT.

If ORDERS table has already been created, and the foreign key has not yet been,

use the syntax for specifying a foreign key by altering a table.

DROP a FOREIGN KEY Constraint:

To drop a FOREIGN KEY constraint, use the following SQL:

IS304: DBMS Practical

NOTE: if you did not determine FOREIGN KEY name, an automatic name will

assigned, so if you want to delete the foreign key you should determine the name

of foreign key.

